Positive feedback sharpens the anaphase switch
نویسندگان
چکیده
منابع مشابه
System-level feedbacks make the anaphase switch irreversible.
The mitotic checkpoint prevents a eukaryotic cell from commencing to separate its replicated genome into two daughter cells (anaphase) until all of its chromosomes are properly aligned on the metaphase plate, with the two copies of each chromosome attached to opposite poles of the mitotic spindle. The mitotic checkpoint is exquisitely sensitive in that a single unaligned chromosome, 1 of a tota...
متن کاملCorticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret.
The corticogeniculate (CG) pathway connects the visual cortex with the visual thalamus (LGN) in the feedback direction and enables the cortex to directly influence its own input. Despite numerous investigations, the role of this feedback circuit in visual perception remained elusive. To probe the function of CG feedback in a causal manner, we selectively and reversibly manipulated the activity ...
متن کاملPositive feedback
Positive feedback is a process that occurs in a feedback loop in which the effects of a small disturbance on a system include an increase in the magnitude of the perturbation.[1] That is, A produces more of B which in turn produces more of A.[2] In contrast, a system in which the results of a change act to reduce or counteract it has negative feedback.[1][3] Mathematically, positive feedback is...
متن کاملPositive feedback and temperature mediated molecular switch controls differential gene regulation in Bordetella pertussis
Based on the phosphorelay kinetics operative within BvgAS two component system we propose a mathematical framework for signal transduction and gene regulation of phenotypic phases in Bordetella pertussis. The proposed model identifies a novel mechanism of transcriptional interference between two promoters present in the bvg locus. To understand the system behavior under elevated temperature, th...
متن کاملHunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop
Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2008
ISSN: 0028-0836,1476-4687
DOI: 10.1038/nature07050